A geostationary orbit is one in which a satellite orbits the earth at exactly the same speed as the earth turns and at the same latitude, specifically zero, the latitude of the equator. A satellite orbiting in a geostationary orbit appears to be hovering in the same spot in the sky, and is directly over the same patch of ground at all times.
A geosynchronous orbit is one in which the satellite is synchronized with the earth's rotation, but the orbit is tilted with respect to the plane of the equator. A satellite in a geosynchronous orbit will wander up and down in latitude, although it will stay over the same line of longitude. Although the
terms 'geostationary' and 'geosynchronous' are sometimes used interchangeably, they are not the same technically; geostationary orbit is a subset of all possible geosynchronous orbits.
Geostationary objects in orbit must be at a certain distance above the earth; any closer and the orbit would decay, and farther out they would escape the earth's gravity altogether. This distance is 35,786 kilometers (22,236 miles) from the surface.
A geosynchronous orbit is one in which the satellite is synchronized with the earth's rotation, but the orbit is tilted with respect to the plane of the equator. A satellite in a geosynchronous orbit will wander up and down in latitude, although it will stay over the same line of longitude. Although the
terms 'geostationary' and 'geosynchronous' are sometimes used interchangeably, they are not the same technically; geostationary orbit is a subset of all possible geosynchronous orbits.
Geostationary objects in orbit must be at a certain distance above the earth; any closer and the orbit would decay, and farther out they would escape the earth's gravity altogether. This distance is 35,786 kilometers (22,236 miles) from the surface.
No comments:
Post a Comment